Cover Image

Layer-by-layer coating of stainless steel plates mediated by surface priming treatment to improve antithrombogenic properties

Irene Carmagnola, Tiziana Nardo, Francesca Boccafoschi, Valeria Chiono
  • Irene Carmagnola
    Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy |
  • Tiziana Nardo
    Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
  • Francesca Boccafoschi
    Department of Health Sciences, University of Piemonte Orientale Amedeo Avogadro, Novara, Italy
  • Valeria Chiono
    Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy


The stainless steel (SS) stents have been used in clinics since 1994. However, typical drawbacks are restenosis and thrombus formation due to limited endothelialisation and hemocompatibility. Surface modification is a smart strategy to enhance antithrombogenicity by promoting endothelialisation. In this work, the layer-by-layer (LbL) technique was applied for coating SS model substrates, after surface priming by functionalisation with 3-aminopropyl triethoxysilane (APTES). A LbL coating made of 14 layers of poly(styrene sulfonate)/poly(diallyldimethylammonium chloride) and heparin as last layer was deposited. FTIR-ATR analysis and contact angle measurements showed that LbL was an effective method to prepare nanostructured coatings. XPS analysis and colorimetric assay employing 1,9-dimethylmethylene blue dye to detect -COOH groups confirmed the successful polyelectrolyte deposition on the coated samples. Preliminary in vitro cell tests, using whole blood and human platelets, were performed to evaluate how surface modification affects platelet activation. Results showed that SS and SS-APTES surfaces induced platelet activation, as indicated by platelet spreading and filopodia formation. After surface modification by LbL coating, the platelets assumed a round shape and no fibrin nets were detected. Data demonstrated that LbL coating is a promising technique to fabricate antithrombogenic surface.


Stent endothelialisation; Surface modification; Silanisation; Stainless steel stent; Layer-by-layer

Full Text:

Submitted: 2016-06-13 09:02:17
Published: 2016-05-30 00:00:00
Search for citations in Google Scholar
Related articles: Google Scholar
Abstract views:


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Copyright (c) 2016 Irene Carmagnola

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
© PAGEPress 2008-2018     -     PAGEPress is a registered trademark property of PAGEPress srl, Italy.     -     VAT: IT02125780185